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1 Introduction

Genetic parameters (heritability and genetic correlations) can be estimated using a restricted maximum
likelihood (REML) method. This method allow for estimation of genetic parameters using phenotypic
information and genetic relationships for individuals in a study population. Genetic relationships are inferred
from a general pedigree or from genetic marker data. REML allow for unbalanced data and account for
genetic relationships within and between families. REML is based on linear mixed model methodology and
use a restricted likelihood approach for estimating genetic parameters.

2 Estimation of Genetic Parameters using REML

The REML method was developed by Patterson and Thompson [1971] as an improvement of the standard
Maximum Likelihood (ML). The ML method was originally proposed by Fisher [1922] but was introduced
to variance components estimation by Hartley and Rao [1967]. ML assumes that fixed effects are known
without error which is in most cases false and, as consequence, it produces biased estimates of variance
components (usually, the residual variance is biased downward). To solve this problem, REML estimators
maximize only the part of the likelihood not depending on the fixed effects, by assuming that the fixed effects
have been, so to speak, fixed. This entails that when comparing multiple models by their REML likelihoods,
they must contain the same fixed effects, and that REML, by itself, does not estimate the fixed effects. A
benefit of this is that the number of parameters in the model is restricted1.

REML does not produce unbiased estimates owing to the inability to return negative values of variance
components of many methods to obtain REML estimators, but it is still the method of choice due to the
fact that this source of bias is also present in ML estimates [Lynch and Walsh, 1998].

1Whether this is the origin of the name may be debatable, as some claim REML is an abbreviation for REsidual Maximum
Likelihood [Searle et al., 1992, p. 250].
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There are no simple one-step solutions for estimating the variance components based on ML and REML
[Lynch and Walsh, 1998]. Instead, we infer the partial derivatives of the likelihoods with respect to the
variance components. The solutions to these involve the inverse of the variance-covariance matrix, which
themselves includes the variance components, so the variance components estimates are non-linear functions
of the variance components. It is therefore necessary to apply iterative methods to obtain the estimates.

In order to better understand the following derivation of ML and REML, it is useful to recall that the
likelihood (L(θ|y)) is any function of the parameter (θ) that is proportional to p(y|θ). Maximizing L(θ|y)
leads to obtaining the most likely value of θ (θ̂) given the data y. Usually the likelihood is expressed in terms
of its logarithm (l(θ|y)) as it makes the algebra easier.

We will start by first getting the ML estimators and, then, will move on to REML as it is a modification
of the first, as explained above. For both, this involves writing the likelihood function, taking the partial
derivatives with respect to the parameters and equating these to zero. Once the likelihood function is found,
the remaining work is purely algebraic and we will not immerse in these details, but instead simply show
the important intermediate steps.

2.1 Maximum Likelihood

The likelihood for the general G-BLUP model, y = Xβ + Zg + e is simply the probability density function
of a multivariate normal distribution, conditional on the known elements. The log-transformed likelihood
can therefore be written as:

l(β, V|X, y) = −n

2 ln(2π) − 1
2 ln |V| − 1

2(y − Xβ)′V−1(y − Xβ) (1)

where V is the variance-covariance matrix, Gσ2
g + Dσ2

e . The first term is just a constant that does not
involve any parameter estimation and therefore it is usually omitted from computation.

We then derive the first derivatives with respect to the parameters β, σ2
g and σ2

e . For the variance components,
however, we will make use of a general expression using σ2

i and the derivatives can later be adjusted to fit
the specific variance components. To help with the derivation, appendix ?? contains some useful properties
for derivatives of matrices.

∂l(β, V|X, y)
∂β

= ∂[(y − Xβ)′V−1(y − Xβ)]
∂β

= X′V−1(y − Xβ) (2)

For the derivatives for the variance components, we introduce the short-hand notation Vi as

Vi = ∂V
∂σ2

i

=
{

D when σ2
i = σ2

e

ZGZ′ when σ2
i = σ2

g

(3)

and so we can write

∂l(β, V|X, y)
∂σ2

i

= −1
2 Tr(V−1Vi) + 1

2(y − Xβ)′V−1ViV−1(y − Xβ) (4)

To get ML estimates of the parameters, the differential equations in (2) and (4) are set equal to zero and we
would attempt to solve for the variable. This is possible for β, but not for σ2

i as both terms in RHS of (4)
contains V−1, which is a function of the variance components. For β, we have the estimate:

β̂ = (X′V̂−1X)−1X′V̂−1y (5)
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which, incidentally, is the BLUE (Best Linear Unbiased Estimator) for β. Notice that the β̂ estimate requires
an estimate on the variance components, hence the V̂.

We now turn our attention to the ML estimators for the variance components. If given an estimate of the
fixed effects β̂, we can rewrite the last term in (4), to take into account the difference between our estimate
and the true fixed effects (by adding and subtracting Xβ̂ into the parenthesis):

(y − Xβ)′V−1ViV−1(y − Xβ) = (y − Xβ̂)′V−1ViV−1(y − Xβ̂)

+(β̂ − β)′X′V−1ViV−1(β̂ − β) (6)

The ML assumes that the fixed effects are known ‘without error’, i.e. we assume we have the true fixed
effects. We can then set β = β̂ in (6), cancelling the last term, and (4) is altered to

∂l(β, V|X, y)
∂σ2

i

= −1
2 Tr(V−1Vi) + 1

2(y − Xβ̂)′V−1ViV−1(y − Xβ̂) (7)

The change can easily be overlooked, but it is the core of the bias of the ML: it ignores the deviation between
our estimate of the fixed effects and the true fixed effect.

As noted above, the ML estimators of the variance components are non-linear functions of the variance
components. To get an estimate of the variance components, an iterative approach is needed, but before
looking into this, we will cover the restricted maximum likelihood.

2.2 Restricted Maximum Likelihood

The fallacy of ML towards the use of ‘true’ fixed effects has in Restricted Maximum Likelihood (REML)
been countered. The trick that REML uses in order to obtain unbiased estimates of variance components is
a linear transformation of the observations, y, that removes fixed effects from the model. For this purpose,
a matrix K is used, such that KX = 0. K does not need to be computed, as it humbly leaves the equations
before we reach the results.

The REML model is thus:
y∗ = Ky = K(Xβ + Zg + e) = KZg + Ke (8)

By substituting the following into the likelihood in (1)

Ky for y; KX = 0 for X; KZ for Z; KVK′ for V

we can obtain restricted log-likelihood (the constant term and terms that do not include variance components
are not included for brevity):

l(V|y) ∝ −1
2 ln |K′VK| − 1

2(Ky)′(K′VK)−1(Ky) (9)

However Searle et al. [1992] proved that:

ln |K′VK| = ln |V| + ln |X′V−1X|

and
(Ky)′(K′VK)−1(Ky) = y′Py = (y − Xβ)′V−1(y − Xβ)

leading to the Restricted likelihood:

l(V|y, X, β) ∝ −1
2 ln |V| − 1

2 ln |X′V−1X| − 1
2(y − Xβ)′V−1(y − Xβ) (10)
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Comparing this to ML,

l(β, V|X, y) ∝ −1
2 ln |V| − 1

2(y − Xβ)′V−1(y − Xβ) (1)

we find the only difference is that the term with second quadratic form is included in REML, because they
are assumed known (without error) in ML.

Again, an iterative approach is needed to get the estimates of the variance components, and further derivation
of the variance component estimators depends on the iterative approach. The approaches used here are based
on finding the set of parameters that maximises the likelihood. The problem can now be treated as a general
problem in the sense that we have to search the parameter space for the combination of parameters that
result in the largest likelihood and/or improve the likelihood from a given set of parameters.

We mention briefly the derivative free methods, as they circumvented inverting the coefficient matrix, which
is required in the derivative-based algorithms [Hofer, 1998]. The Simplex method only uses the REML
likelihood, and relies on other means for guessing the updated variance components [Nelder and Mead, 1965].
Another approach by Smith and Graser [1986] and Graser et al. [1987] rewrites the restricted likelihood, so
a computational demanding operation can be solved by Gaussian elimination. These are simple, but may
be plagued by numerical problems, especially if many parameters (are) to be estimated [Jensen et al., 1997]
and can be less efficient when used with increasing number of traits [Misztal, 1994, Jensen et al., 1997].

An alternate heuristic is the Expectation-Maximization (EM) algorithm [Dempster et al., 1977], which is
based on the first derivatives. The idea here is that the model comprises observed data, unobserved, latent
variables, and parameters. If any two of the three are known, the third is quite tractable. In terms of
G-BLUP, the genetic values g are the unobserved, latent variables, and the parameters are the variance
components. If the variance components and observations (and covariance matrices) are known, genetic
values can be calculated from BLUP methods. If it was the genetic values, instead of variance components,
that was known, the latter can be deduced by reflecting on the assumptions placed on the random variables.
However, we rarely know both the genetic values and the variance components.

The EM algorithm consists of two steps, the E step which expresses the expectation of the unobserved
variables conditional on the observed data and estimates of the parameters; and the M step which maximises
the parameters, based on the observed data and expectation of the unobserved variables. This is still an
iterative approach, and it is started with some initial guesses for the parameters, but by alternating between
the E- and M-step, the algorithm approximates the (restricted) maximum likelihood [Knight, 2008]. There
are however computational issues with the EM algorithm, as it a) requires inverting the coefficient matrix
(although workarounds exists), and b) may require an extensive number of iterations to converge [Hofer,
1998].

2.3 Average-Information REML

We have now described the progress of estimating variance components from Maximum Likelihood, to
Restricted Likelihood, with means of using the REML estimators of derivative free and first derivatives. The
time has now come to the second derivatives, starting with the Newton-Raphson approach, and the Fisher
Scoring Method, which naturally leads to the Average Information REML.

The section will conclude on commenting on convergence criteria and a short discussion on the interpretation
of the estimated variances.

The Average-Information REML (AI-REML) algorithm is based on the Newton-Raphson (NR) approach to
approximate a function’s root, the function here being the first derivative of REML. It uses the first and
second derivatives of the likelihood to estimate in which direction and distance (in the parameter space) an
update to the parameters that increases the likelihood might be found.

Following the NR approach, the parameters θ at the tþ, step can be updated by

θ(t+1) = θt −
(

∂2l(θt)
∂θt∂θt

)−1
∂l(θt)
∂θt

(11)
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where θ is the vector of variance components, i.e. θ = (σ2
e , σ2

g), and l(θt) is the restricted likelihood in (10),
but written with emphasis on the vector of variance components at the tþ, step. This is similar to Euler’s
method for approximating a differential equation, but instead of a fixed step size, the step size is determined
by the second derivative. Note: The above is not the AI-REML algorithm.

The first derivative (∂l(θt)/∂θt) is a r-length vector, where r is the number of variance components, including
the residual, to be estimated.

The second derivative is an r × r matrix. Normally referred to as a Hessian matrix, in this context it is the
observed information matrix. Skipping the algebra of derivation, it can be expressed, cf. Lynch and Walsh
[1998], as

∂2l(θ)
∂σ2

i ∂σ2
j

= 1
2 Tr(PViPVj) − y′PViPVjPy (12)

Note however that entries relating to the residual can be reduced to simpler expressions. The NR approach
is not necessarily stable, as initial guesses that lie far from the maxima will lead to large steps that step past
the maxima, resulting in an oscillating iteration that only – if it does – slowly converges. Furthermore, the
calculation of the observed information matrix in (12) can be computational straining.

An alternate approach is the Fisher Method of Scoring. The basic principle is the same, except instead of
the Hessian matrix, the negative expected Hessian matrix is used. This is said to always be positive and
stabilizes the algorithm [Lynch and Walsh, 1998]. The expected information matrix can be calculated as

−Ey

[
∂2l(θ)

∂σ2
i ∂σ2

j

]
= −1

2 Tr(PViPVj) (13)

and as before, entries including the residual variance component can be simplified. D.L. Johnson and Robin
Thompson, Per Madsen, Just Jensen, and Esa A. Mantysaari [Johnson and Thompson, 1995, Madsen et al.,
1994, Jensen et al., 1997] showed that using the average of the observed and expected information matrix
was easier to compute [Jensen et al., 1997], hence Average-Information REML.

It was shown that the average-information matrix, IA, could be calculated by

IA(θ) = F′PF = F′R−1F − T′W′R−1F (14)

where F is a n × r matrix and the jþ, column (fj) corresponds to ∂V
∂θj

Py. W is the total design matrix,
i.e. W = (X Z), and T is a n × r matrix whose columns are the solutions to the MME using fj instead of y.
Jensen et al. [1997] note that once F is known the average information can be computed easily by solving
the MME once for each parameter in θ using efficient techniques for solving large and sparse linear systems,
such that the solutions can be found without computing the full inverse of the MME coefficient matrix.

For G-BLUP the two columns of F can be calculated as:

fg = Zĝ
σ2

g

(15)

fe = ∂V
∂σ2

e

(Dσ2
e)−1(y − Xβ̂ − Zĝ) = ê

σ2
e

(16)

where β̂ and û are the MME solutions.

It should therefore be seen, that the AI-REML approach is easier to compute than the respective approaches
mentioned prior to this. We briefly mention that the inverse of G can be calculated while constructing G,
and the inverse of Dσ2

e is fool proof. The algorithm has additional advantages, as the elements of the first
derivatives can be calculated at the same time as calculating the second derivatives, without processing the
data again.
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However, the parameter update might result in negative estimates of the variance components, and the
implementation must be safeguarded against this by using a weighted average of the AI update and an EM
update, that is modified to use the average information matrix. If the parameter update is still outside the
parameter space, the update is re-attempted while gradually increasing the weight on the EM update.

Finally, when the algorithm has converged, the observed information matrix contains estimates of the uncer-
tainty of the parameter estimate where the inverse of the expected information matrix contains the standard
errors of the parameter estimates [Lynch and Walsh, 1998, p. 796].

2.3.1 Convergence

The question now goes towards when to stop updating the parameter estimates. We do this when we believe
they have converged. One example is when the change in values of the parameter estimates are sufficient
small, i.e. ∥θt+1 −θt∥ < ϵ1, where ϵ1 is a very small value such as 10−5 or 10−8. However, Jensen et al. [1997]
notes that this criterion might be fulfilled under the EM algorithm, before the EM algorithm has found a
maximum.

Another criterion would be to see if the first derivatives are small enough, in line with the idea behind the
(RE)ML approaches. Jensen et al. [1997] emphasises that parameters estimated with low accuracy should
be weighted heavier, thus another criterion could be∥∥∥∥diag(I−1

A )√
r

· ∂l(θ)
∂θ

∥∥∥∥ < ϵ2 (17)

but this criterion suffers from being very large when estimates are at the boundary of the parameter space.
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