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1 Introduction
From association studies it have been shown that the markers associated with trait variation are not uniformly
distributed throughout the genome, but are enriched in genes that are connected in biological pathways [Allen
et al., 2010, Lage et al., 2012, Maurano et al., 2012, O’Roak et al., 2012]. This knowledge could be used to
construct a statistical modelling framework which quantifies the joint effect of a set of markers located within
e.g. genes, sequence ontology, biological pathways, protein interactions, or any other type of externally, prior
biological knowledge. Such SNP sets can be termed genomic features.

The methodology that collectively test a set of genome-wide genetic markers for association with phenotypic
variation is known as gene set enrichment analyses (GSEA) [Wang et al., 2007, Listgarten et al., 2013].
The idea of aggregating smaller units into larger sets, was originally inspired by gene expression microarray
analyses, where individually differential expressed genes are of minor interest, instead the focus is on identifying
patterns of differentially expression by aggregating genes exhibiting similarity in their functional annotation
[Goeman et al., 2004, Subramanian et al., 2005, Goeman and Bühlmann, 2007]. Various GSEA approaches
have been developed through the years, and have been reviewed extensively, see e.g. [Wang et al., 2010,
Fridley and Biernacka, 2011, Mooney et al., 2014, Leeuw et al., 2016]. Common for all approaches is the
test for association between trait variation and the joint contribution of multiple genetic variants aggregated
within predefined sets, i.e., genomic features.

Genomic features are collections of genetic variants grouped together based on common biological- or molecular
functions, or other characteristics. The aggregation of genetic variants rely on prior biological knowledge
from external sources such as protein-protein interactions (e.g., STRING [von Mering et al., 2005]), biological
pathways (e.g., KEGG [Kanehisa and Goto, 2000]), gene functions (e.g., gene ontology (GO) terms [Ashburner
et al., 2000]), sequence ontologies (e.g., introns, exon and binding sites [Eilbeck et al., 2005]), drug targets
(e.g., drug bank [Wishart et al., 2006]), genome-wide expression patterns (e.g., GTEx [Consortium, 2015]), or
prior trait associations (e.g., human GWAS catalog [Buniello et al., 2019]). In addition, feature sets can be
created from other types of omic data such as metabolomic, proteomic or epigenetic variation.
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Naturally, only genetic markers located within the genomic features can be considered in the analysis, thus,
an important step is the mapping of variants to the genomic features (Figure 1). This is typically done by
grouping all markers within known gene regions. To capture regulatory regions for each gene, upstream and
downstream regions are often included, and potentially also any regions in linkage disequilibrium (LD) with
the gene. Therefore, some markers may be linked to multiple feature sets.

Genes (+/- regulatory sequences)
connected in biological pathways and networks

or other newtorks such as 
protein interactions or metabolites

Figure 1: Graphical representation of genomic feature classes. First, all SNPs located within the same gene region
(e.g. the transcribed region, dark-blue SNPs) are aggregated. Gene regions can be extended such that SNPs within
regulatory regions are included (light-blue SNPs). Second, genes can then be grouped based on prior biological
information, genomic features, such as genes connected in pathways, or based on other similarities, such as protein
networks or common metabolite signatures. The genomic feature classes are thus collections of SNPs that has been
aggregated based on shared biological or molecular characteristics.

The degree of new knowledge obtained from the genomic feature analysis strongly depend on the quality and
complexity of the genomic feature class. The more reliable the resource is, the more accurate the following
results will be. However, if the degree of feature complexity is low, and the quality is high, the outcome
might be of minor interests, e.g. chromosomal regions are a well-defined feature, but enrichment of certain
chromosomes or chromosomal regions might be of less interest. It is therefore important prior to the feature
analysis to clearly formulate the scope of the analysis.

Genomic feature models have the prospect to contribute with novel knowledge, but they highly depend upon
the availability and specificity of the prior biological information. Unfortunately, such information is not
readily available across the tree of life. For model organisms and humans, much information is available, but
even for well-studies organisms, such as livestock species, the amount and level of detail is limited. However,
the definitions of genomic features are constantly evolving, and new knowledge will continuously be added,
also for those organisms which currently are lacking good feature information.
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1.1 Different GSEA modelling approaches
The GSEA test can be categorized as belonging to either a Single-step or a Two-step approach. In the
single-step approaches, a genomic feature is modeled by a single model. The estimated effects are then
evaluated, either by the properties of the model (e.g., score based statistics) or by comparing the model to a
null hypothesis. The set of markers are modeled as a joint contribution to a phenotypic trait, by including
them as an extra random effect. In the two-step approaches, a single model is used to calculate test statistics
on all the markers’ effects (i.e., from linear regression or linear mixed models). The test statistics described
below all attempt to determine whether a given set of genetic variants contributes to the observed phenotypic
trait.

1.1.1 Null hypotheses

We distinguish between two types of null hypotheses, the competitive and the self-contained [Goeman and
Bühlmann, 2007, Maciejewski, 2013]. The self-contained is the easiest and corresponds to determining whether
a genomic feature, by it self, does not display any association to the phenotypic trait. This is usually done by
defining that the variance component or predicted effect equals zero.

The competitive corresponds to determining whether the degree of association within a genomic feature is
the same as outside the genomic feature.

Naturally, the choice of null hypothesis affects the choice of test statistic, but also the biological interpretation
of the significance of a finding. The self-contained may be preferable over a competitive, as it has more power
[Goeman and Bühlmann, 2007], and the biological interpretation is simpler, as it determines whether there is
or there is no association.

1.1.2 Evaluating the test statistics

Once a test statistic has been calculated, it needs to be evaluated to determine whether the genomic feature
of interest is significant. This is done by finding the test statistic’s position within a distribution, allowing us
to evaluate the probability of finding a test statistic of the given magnitude by chance

We distinguish between three types of distributions; the exact, the approximate, and the empirical found
distribution.

The exact distributions (e.g. hypergeometric test) are derived from the test statistic itself. They might seem
to be the preferred, but only if the test statistic actually does describe the desired property being tested.

The approximate distributions (e.g. χ2) relies on that some distributions approximate each other under certain
conditions. We can then replace an intangible expression with a simpler, but when being applied to actual
data, the conditions are ‘bent’ into place.

The empirical distributions are the brute-force ‘when-all-else-fails’ solutions we attend to, when the other
distributions are too computational demanding, or the conditions for approximating seem to strongly bent.
Usual methods for obtaining these are bootstrapping or permutation routines, but caution should be taken
under which conditions the routines are performed.

2 Single-step approaches
In the single-step approaches, the data is fitted to the model with AI-REML to obtain estimates of the
variance components (θ̂) and the likelihood, which is used to compare nested models with a likelihood ratio
test (LRT).

The LRT, Wald’s test, and Rao’s Score test, can be referred to as ‘The Holy Trinity’ [Rao, 2009], and are all
related to the likelihood and the first and second derivation (Figure 2). The first derivative gives the slope of
the function 1, and the second derivative is related to the uncertainty of the estimated variance component.

1The first derivative of the likelihood is also referred to as the ’score’, which is the basis of the Score based statistic.
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Figure 2: The Holy Trinity of Likelihood Ratio, Wald’s and Rao’s Score test. The graph displays likelihood
as a function of the variance components, maximised at the true value, θ̂.

The LRT compares the model fit between the full model and the reduced model. In Wald’s test, the model
parameters are fitted using the full model, and test if the estimated variance component is significantly
different from a particular value (usually zero). Rao’s Score test uses the reduced model (i.e., null model), and
estimates the size of improvement in model fit, if an additional variance component was added to the model.
Both the Wald and the Rao’s score tests are asymptotically equivalent to the LRT, that is, as the sample size
becomes infinitely large, the values of the Wald and Rao’s score test statistics will become increasingly close
to the test statistic from the LRT. A few additional details on the different approaches are given below.

2.1 Likelihood Ratio Test
The likelihood ratio tests (LRT) are used to assess whether a reduced model fits the data better than the full
model by comparing the likelihoods of the two models. A high LR indicates that the full model is better
at explaining the observed genomic variance than the reduced model with one less variance component.
The reduced model has to be nested within the full model, and when REML is used, the two models being
compared has to have the same fixed effects, otherwise the two likelihoods are not comparable. The LRT
statistic can be derived as:

TLRT = 2 ln
[
L(θ̂|y)
L(θ̂r|y)

]
= −2

[
l(θ̂r|y)− l(θ̂|y)

]
, (1)

where l(θ̂|y) is the log-likelihood for the full model, and l(θ̂r|y) is the log-likelihood for the reduced model.
When the sample size is sufficiently large, the LRT statistic is χ2 distributed with κ degrees of freedom,
where κ is the difference in parameters between the two comparable models.

2.2 Wald’s test
The Wald’s test is a parametric test that compares an estimated variance component to some particular
value, θ0, based on some null hypothesis:

(θ̂ − θ0)2

Var(θ̂)
(2)
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The test statistic is assumed χ2-distributed with one degree of freedom. If the null hypothesis was that the
{ith} variance component was equal to zero, the above can be expressed as a quadratic form by

TWald = (θ̂i − 0)′
[
IE(θ̂)−1

]ii
(θ̂i − 0) (3)

where
[
IE(θ̂)−1

]ii
is the {ith} diagonal element of the inverse expected information matrix. Wald’s test has

the advantage, that it only requires fitting and estimating the parameters under the full model. If the test
fails to reject the null hypothesis, this suggests that removing the corresponding variance component from
the model will not substantially harm the fit of that model.

Wald’s test is computed as the parameter estimate divided by its asymptotic standard error. The asymptotic
standard errors are computed from the inverse of the second derivative matrix of the likelihood with respect
to each of the covariance parameters. The Wald’s test is valid for large samples, but it can be unreliable for
small data sets. When used on correlated variance components, IE might not be full rank and therefore not
invertible.

2.3 Rao’s Score test
Rao’s score test requires estimating only a single model that does not include the parameter(s) of interest.
Thus, one can test if adding the variance component to the model will result in a significant improvement
in model fit, without fitting additional models. The test statistic is based on the slope (or score) of the
likelihood function, using model parameters estimated under the null model. If the null model is true, then
the slope of the likelihood function is close to zero. If the null model is not true, fixing a variance component
to a value will penalise the likelihood.

Instead of calculating likelihoods for both the null and the full model, the first and second derivatives is used
to get an indication of the produced change. The Rao’s Score test statistic can be formulated as:

TRao =
(
l′(θi = 0, θ̂−1)

)′ [
IE(θi = 0, θ̂−1)−1

]ii (
l′(θi = 0, θ̂−1)

)
, (4)

where
(
l′(θi = 0, θ̂−i)

)
is the first derivative of the full model’s likelihood function, calculated using the parame-

ters estimated with the null model and the parameter of interest (θi) fixed cf. null model.
[
IE(θi = 0, θ̂−1)−1

]ii
is the {ith} diagonal element of the inverse expected information matrix, under same conditions as the first
derivative. It is possible to use the average between the expected and observed information matrix, i.e. the
average information matrix, as it may be easier to compute [Freedman, 2007, Johnson and Thompson, 1995,
Madsen et al., 1994, Jensen et al., 1997].

The Rao’s Score test has an asymptotic distribution of χ2 with number of parameters in θ̂i as degrees of
freedom when the null hypothesis is true. Some issues related to the test statistic may occur if the information
matrix is not positive definite which can happen if the null hypothesis is true [Freedman, 2007].

2.4 Score based statistics
There are several different score-based statistics that also are derived from the first derivative of the likelihood.
The score statistic can be written as

TScore = 1
2(y−Xβ)′V−1ZgiZ′V

−1(y−Xβ), (5)

which under the null hypothesis H0 : σ2
i = 0 should be close to zero. If the parameters are estimated under

the null model,the score statistic for a group of markers i is:
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TScore = 1
2(y−Xβ̂)′V̂−1

0 ZgiZ′V̂−1
0 (y−Xβ̂). (6)

Utilizing that P̂y = V̂−1
0 (y−Xβ̂) = ê, Ti can be computed as:

TScore = 1
2 ê′ZGiZ′ê = 1

2 ê′ZWiW′
i

mi
Z′ê, (7)

where the latter expansion is done for the subset of markers. This is computational simple, and also easy
to derive an empirical distribution of the score statistic under both the competitive and self-contained null
hypothesis.

3 Two-step approaches
In the first step, a test statistic for the association (e.g., t-statistics) of individual markers with the trait
phenotype is obtained from traditional single-marker regression (can also be from a mixed model or a Bayesian
linear regression). In the second step, for each set of markers being tested, a summary statistic is obtained.
For each set an appropriate summary statistic measuring the degree of association between the set of markers
and the phenotypes is computed.

3.1 Gene set statistics
Determination of association of individual markers is based on a single marker test statistic such as the
t-statistics and a threshold for this statistic.

Let m denote the total number of markers tested, mF is the total number of markers belonging to the set of
interest, mA is the number of associated markers, and mAF is the number of associated markers belonging to
the feature. Thus m, mA, and mAF are fixed.

We consider two properties of a marker; 1) to be associated to the phenotypic trait, and 2) belong to the
genomic feature of interest. Let H0 denote the null hypothesis, that the two properties of a marker are
independent, or equivalently that the associated markers are picked at random from the total population of
tested markers. Rivals et al. [2007] show that this can be formulated and tested in a number of ways.The
different tests can be evaluated using an exact (Hypergeometric), approximate (χ2), or empirical distribution
(TSum) under the null hypothesis.

3.1.1 Hypergeometric test

The total number of markers that belong to the genomic feature of interest and that are associated to the
trait phenotype can be computed as

TCount = mAF =
mF∑
i=1

I(ti > t0) (8)

where ti is the {ith} single marker test statistics, t0 is an arbitrary chosen threshold for the single marker test
statistics, and I is an indicator function that takes the value 1 if the argument (ti > t0) is satisfied.

The number of associated markers that belong to a genomic feature, mAF , can be modelled using a
Hypergeometric distribution that has a discrete probability distribution that describes the probability of
mAF successes in mF draws without replacement (can only be drawn one time) from a finite population of
size m containing exactly mA successes. Thus if the null hypothesis is true (associated markers are picked at
random from the total population of tested markers), then the observed value mAF is a realization of the
random variable MAF having a hypergeometric distribution with parameters m, mA, and MF , which we
denote by MAF ∼ Hyper(m,mA,mF ).
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However, the hypergeometric test assumes that the markers being sampled are independent, a rather strong
assumption in genetic data. Therefore, the hypergeometric test might not correctly identify significant
association, but instead associated markers that are strongly correlated [Goeman and Bühlmann, 2007].

3.1.2 χ2 test

The second summary statistic is based on a χ2 test. Let the observed data be presented in a contingency
table where each observation is allocated to one cell of a two-dimensional array of cells according to the
values of the two outcomes:

Table 1: Contingency table for χ2 test in two-step approach.

In feature Not in feature Total
Associated mAF mAnF mA

Not associated mnAF mnAnF mnA

Total mF mnF m

Let again H0 denote the null hypothesis that the property to belong to the genomic feature of interest, and
that to be associated, are independent. If the occurrence of these two outcomes are statistically independent,
we expect the number in the {ijth} cell to be fij = mimj

m2 . Based on this expectation we can compute the
following summary statistic:

Tχ2 =
2∑
i=1

2∑
j=1

(mij −m · fij)2

m · fij
(9)

where fij is the observed frequency in the contingency table. This is called the χ2 test for independence
and it has been shown that the Tχ2 variable is asymptotically χ2 distributed with one degree of freedom
[Wackerly et al., 1996, Rivals et al., 2007]. The alternative hypothesis corresponds to the variables having an
association or relationship, where the structure of this relationship is not specified.

In summary, under the null hypothesis that the probability of a marker belonging to a genomic feature is
independent of being associated to the trait phenotype (i.e. pAF = pnAF ), the exact distribution of MAF

is the hypergeometric distribution MAF ∼ Hyper(m,mA,mF ). This distribution can, if m is large, be
approximated with the bionomial distribution MAF ∼ Bi(mA,mF /m). If the two samples, are large, it is
also possible to exhibit an approximately normal variable Z or its square D2 = Z2, the latter being hence
approximately χ2 distributed with one degree of freedom.

One of the differences between the hypergeometric and χ2 test statistic is that the latter implicitly distinguishes
between over- or under-representation, i.e. the squared difference between the expected and observed counts
for all the 4 cells contribute to the Tχ2 test statistic. It is possible to test for both over-representation
(pAF > pnAF ) or under-representation (pAF < pnAF ).

Both tests are potentially of interest for understanding the genetic basis of complex traits. If the number
of associated markers is very small in the genomic feature then it may be interpreted as selection/highly
conserved region. If the number of associated markers is large in the genomic feature then this may indicate
we have identified an important feature underlying the genomic variance of the trait.

In cases where both over-representation and under-representation of genomic features are of interest then it
is generally most appropriate to consider a two-sided test. It is also possible to define more detailed and
specific hypothesis such as testing whether the associated markers contribute negatively or positively to the
trait of interest.

However, there is the arbitrariness of the threshold for determining ‘significantly associated’, no matter how
it is chosen and markers whose test statistics differ by a tiny amount may be treated completely differently.
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By design this test will have high power to detect association if the genomic feature harbour markers with
large effects, but it will not detect a situation where there are many markers with small to moderate effects
[Newton et al., 2007]. In this case, it is more powerful to use a summary statistic such as the mean or sum of
the test statistics for all markers belonging to the same genomic feature.

3.1.3 TSum

As noted above, if the phenotypic trait of interest is governed by many markers with small to moderate
effects, counting ‘significantly associated’ markers neglects a lot of information. We therefore consider the
third summary statistic

TSum =
mF∑
i=1

ti (10)

where ti is a test statistic for the {ith} marker. There are number of choices for ti such as likelihood ratio,
the score based statistic, or the predicted marker effects, and they might be transformed by e.g.squaring.
The nature of TSum is therefore difficult to describe in terms of exact or approximate distributions, and is
included here as an intuitive example where empirical distributions are useful.

3.2 Permutation versus exact and asymptotic test
If we can derive an exact distribution of test statistic under the null hypothesis then we can use this to
determine the level of statistical significance for the observed test statistic. The advantage of this is that it
is computationally fast and that it works better if the sample size (i.e. n number of observation) is small.
However, many of the test statistics are derived based on an asymptotic distribution. If the sample size is
small the asymptotic formula’s used to calculate the p-value may not be correct. In this case a different
approach could be to find the p-value using a permutation method.

A drawback of the permutation method is that it is hard to demonstrate very low p-values. Showing that a
p-value is lower than 10−7 for example, needs at least 107 permutations. Often if the sample size is small, the
total number of permutations is not large enough to attain very low significance levels.

The manner of which we permute the data is not arbitrary, but depends on the nature of the null hypothesis
being tested. Goeman and Bühlmann [2007] classified the null hypotheses as either self-contained or
competitive.

A self-contained null hypothesis assumes that the marker, or set of markers, is not associated to the phenotypic
trait, or has an effect without comparison to other markers of sets. I.e. the similarity between observations
and genetics is incidental. To obtain an empirical distribution of the test statistic under a self-contained null
hypothesis, we can shuffle the observations thus breaking the link between observations and genetics. This
can be referred to as a subject-randomisation approach [Goeman and Bühlmann, 2007], but we refer to it
as a ‘permutation’ approach. However, if using models with multiple random effects, where the association
between only one of the random effects is in question, shuffling the observations would break the link for all
random effects, rendering the permutations useless. In this case, care should be taken to permute the link
between the observations and the random effect in question.

A competitive null hypothesis assumes that the marker, or set of markers, is not more associated than any
other marker or set of markers. An empirical distribution for a competitive null hypothesis is then obtained
by sampling random sets of markers. However, all parameters that might influence the test statistic must be
the same. I.e. if the number of markers influence the test statistic, the same number of markers must be
sampled repetitively to form the random sets. And if there is an inherent structure between the markers in
the set, this structure should be present for the random sets.
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