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1 Introduction

Bayesian linear regression models have been proposed as a unified framework for gene mapping, prediction
of genetic predispostion, estimation of genetic parameters and effect size distribution (Moser et al. 2015).

Bayesian linear regression models attempts to account for the underlying genetic architecture of the trait.
This is achieved by using many linked markers covering the entire genome to jointly estimate marker effects,
and by allowing the genetic signal to be heterogeneous distributed over the genome (i.e. some regions have
stronger genetic signal than others). This may in some situations allow a more accurate estimate of the true
underlying genetic signal leading to more accurate predictions.

Bayesian linear regression models can also be used to map genetic variants associated with phenotypes and
to estimate the total variance explained by the genetic markers. Because they fit all markers simultaneously
and account for linkage disequilibrium between markers, they should have greater power to detect true
associations, find less false negatives and give unbiased estimates of the larger marker effects. They can also
provide information about the genetic architecture of the trait from the hyper-parameters of the distribution
of marker effects.

Bayesian linear regression models fit all markers simultaneously and their effects as drawn from a prior
distribution that attempts to match the true distribution of marker effects as closely as possible. However
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the true distribution of effect sizes is unknown but a mixture of normal distributions can approximate a
wide variety of distributions by varying the mixing proportions. Erbe et al. used this prior and included
one component of the mixture with zero variance. A similar model was proposed by Zhou et al. but with a
mixture of two normal distributions, one with a small variance and one with a larger variance.
In the following the statistical model, prior distributions of model parameters, algorithms for estimation of
model parameters, extensions for handling multiple marker sets and multiple traits for the Bayesian linear
regression models is presented. We will present two alternative BLR models, BLR model for marker effects
and BLR model for individual effects.

2 Bayesion Linear Regression Model for Marker Effects

2.1 Statistical model and model parameters

In the multiple regression model the phenotype is related to the set of genetic markers:

y = Xb + e (1)

where y is the phenotype, X a matrix of SNP genotypes, where values are standardised to give the ijth
element as: xij = (xij − 2pj) /

√
2pj (1 − pj), with xij the number of copies of the effect allele (e.g. 0, 1 or 2)

for the ith individual at the jth SNP and pj the allele frequency of the effect allele. b are the genetic effects
for each SNP, and e the residual error. The dimensions of y, X, b and e are dependent upon the number of
traits, k, the number of SNP markers, m, and the number of individuals, n. The residuals, e, are a priori
assumed to be independently and identically distributed multivariate normal with null mean and covariance
matrix Iσ2

e .

2.2 Estimation of parameters using Bayesian methods

In the Bayesian multiple regression model the posterior density of the model parameters (b,σ2
b ,σ2

e) depend
on the likelihood of the data given the parameters and a prior probability for the model parameters:

p(b, σ2
b , σ2

e |y) ∝ p(y|b, σ2
b , σ2

e)p(b|σ2
b )p(σ2

b )p(σ2
e) (2)

The prior density of marker effects, p(b|σ2
b ), defines whether the model will induce variable selection and

shrinkage or shrinkage only. Also, the choice of prior will define the extent and type of shrinkage induced.
Ideally the choice of prior for the marker effect should reflect the genetic architecture of the trait, and
will vary (perhaps a lot) across traits. Most complex traits and diseases are likely highly polygenic, with
hundreds to thousands of causal variants, most frequently of small effect. So, the prior distribution must
include many small and few large effects. Furthermore marker effects are a priory assumed to be uncorrelated
(but markers can be in strong linkage disequilibrium and therefore a high posterior correlation). Many priors
for marker effects have been proposed. These priors come more from practical (ease of computation) than
from biological reasons. Each prior originates a method or family of methods, and we will describe some of
them next, as well as their implications.

Prior marker variance Bayes N

In the Bayes N approach the prior the marker effect, b, follows a priori a normal distribution with a variance
σ2

b which is constant across markers:

p(b) =
∏

i

p(bi) (3)
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where

p(bi) = N
(
0, σ2

b

)
(4)

In a normal distribution most effects are concentrated around 0, whereas few effects will be large. Therefore,
the prior assumption of normality precludes few markers of having very large effects – unless there is a lot
of information to compensate for this prior information.

Prior marker variance Bayes A

In the Bayes A approach it is assumed that a priori we have some information on the marker variance. For
instance, this can be σ2

b . Thus, we may attach some importance to this value and use it as prior information
for σ2

bi
. A natural way of doing this is using an inverted chi-squared distribution with with υb degrees of

freedom and scale parameter S2
b = υbσ2

b

p(bi|σ2
bi

) = N
(
0, σ2

bi

)
(5)

In the second stage, we postulate a prior distribution for the variance themselves:

p(σ2
bi

|υb, S2
b ) = S2

b χ−1
υb

(6)

The value of σ2
b should be set as σ2

b = υb−2
υb

σ2
g

2
∑

i
pi(1−pi)

because the variance of a t distribution is υb

υb−2 . It
can be shown that this corresponds to a prior on the marker effects corresponding to a scaled t distribution
(Gianola et al. 2009):

p(bi|σ2
b , υb) = σbt (0, υb) (7)

which has the property of having “fat tails”. This means that large marker effects are more likely a priori
compared to a normal distribution.

Prior marker variance Bayes C

In the Bayes C approach the marker effects, b, are a priori assumed to be sampled from a mixture with
a point mass at zero and univariate normal distribution conditional on common marker effect variance σ2

b .
This reflect a very common thought was that there were not many causal loci. This can be implemented
by introducing additional variables δi which explain if the i-th marker has an effect or not. In turn, these
variables δ have a prior distribution called Bernouilli with a probability π of being 0. Therefore the hierarchy
of priors is:

p(bj |δi, σ2
bi

, π) =
{

0 with probability π,
∼ N(0, σ2

bi
) with probability 1 − π,

(8)

p(σ2
bi

|υb, S2
b ) = S2

b χ−1
υb

(9)

where S2
b = σ2

b υb with σ2
b = σ2

g

(1−π)2
∑

i
pi(1−pi)

because the variance of a t distribution is υb

υb−2 .

Prior marker variance Bayes R

In the Bayes R approach the marker effects, b, are a priori assumed to be sampled from a mixture with a
point mass at zero and univariate normal distributions conditional on common marker effect variance σ2

b ,and
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variance scaling factors, γ:

bj |π, σ2
b =


0 with probability π1,
∼ N(0, γ2σ2

b ) with probability π2,
...
∼ N(0, γCσ2

b ) with probability 1 −
∑C−1

c=1 πc,

(10)

where π = (π1, π2, ...., πC) is a vector prior probabilities and γ = (γ1, γ2, ....., γC) is a vector of variance
scaling factors for each of C marker variance classes. The γ coefficients are prespecified and constrain how the
common marker effect variance σ2

b scales within each mixture distribution. Typically γ = (0, 0.01, 0.1, 1.0).
and π = (0.95, 0.02, 0.02, 0.01).

The prior distribution for the marker variance σ2
b is assumed to be an inverse Chi-square prior

distribution,χ−1 (Sb, νb).

The proportion of markers in each mixture class π follows a Direchlet (C, c + α) distribution, where c is a
vector of length C that contains the counts of the number of variants in each variance class and α = (1, 1, 1, 1)′.

Using the concept of data augmentation, an indicator variable d = (d1, d2, .., dm−1, dm), is introduced, where
dj indicates whether the j’th marker effect is zero or nonzero.

2.2.1 Estimation of model parameters

Bayesian linear regression methods use an iterative algorithm for estimating joint marker effects. Estimation
of the joint marker effects depend on additional model parameters such as a probability of being causal (π),
an overall marker variance (σ2

b ), and residual variance (σ2
e). Estimation of model parameters can be done

using MCMC techniques by sampling from fully conditional posterior distributions.

To illustrate consider the following MCMC algorithm used to obtain estimates of parameters in BayesR
models. The multiple linear regression model is parameterized in terms of θ = (σ2

e , σ2
β , γ, π, b, d). The full

conditional sampling distributions for these parameters are presented below.

The joint posterior for all parameter in the multiple regression model can be written as :

f
(
σ2

e , σ2
β , γ, π, b, d|y

)
∝

(
y|σ2

e , σ2
β , γ, π, b, d

)
f

(
b|d, γ, σ2

β

)
f (d|π) f

(
σ2

e

)
f

(
σ2

β

)
f (π) (11)

The parameters dj and bj are sampled jointly from their joint full conditional distributions, which can be
written as the product of the full conditional distribution of bj given dj and the marginal full conditional
distribution of dj :

fj (dj , bj |θ−j , ỹ) = fj (bj |θ−j , dj , ỹ) fj (dj , |θ−j , ỹ) (12)

Where θ−j is all parameters except dj and bj , and ỹ = y − X−jb−j is the phenotype adjusted for all marker
effects except for j’th marker (bj).

The full conditional distribution for bj can be be written as:

fj (bj |θ−j , dj , ỹ) ∝ N
(
C−1

j rj , C−1
j

)
(13)

where C−1
j = σ2

e

x
′
j
xj+ σ2

e
σ2

c

and rj = x
′
j ỹ

σ2
e
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The marginal full conditional probability for the indicator variable of dj is:

fj (dj = c|θ−j , ỹ) = fj (ỹ|dj = c, θ−j) f (dj |πc)∑C
k=1 fj (ỹ|dj = k, θ−j) f (dj |πk)

(14)

where fj (ỹ|dj = c, θ−j) =
(
σ2

c

)−0.5 (
C−1

j

)0.5 exp
[ 1

2 C−1
j r2

j

]
From these expression probabilities for the categorical distribution for an arbitrary number of mixture
components can be computed. Given these probabilities sample from a categorical distribution, which
determines which class the variant will be sampled from. Conditional on the marker variance class sample
the effect from the relevant normal distribution or give it a zero effect. To sample from the categorical
distribution: 1) create a vector of cumulative probabilities calculated from above ordered by category, and
2) accept the lowest c such that the cumulative probability > u, where u is sample from a uniform distribution
U (0, 1).

The proportion of markers in each mixture class π follows a Direchlet (C, c + α) distribution, where c is a
vector of length C that contains the counts of the number of variants in each variance class and α = (1, 1, .., 1).

The full conditional posterior distribution for σ2
β is a scaled inverse chi-squared distribution with υβ = ν̃β +q

degrees of freedom and scale parameter S2
β =

ν̃β S̃2
β+

∑q

j=1

b2
j

γdj

ν̃β+q
where ν̃β and S̃2

β are the prior degrees of
freedom and scale parameters.

The full conditional posterior distribution for σ2
e is a scaled inverse chi-squared distribution with υe = ν̃e +n

degrees of freedom and scale parameter S2
β = ν̃eS̃2

e +sse

ν̃e+n
where ν̃e and S̃2

e are the prior degrees of freedom and
scale parameters and sse = y

′
y − b

′
r∗ − b

′
X

′
y.

2.3 Extensions to summary statistics

The key parameter of interest in the multiple regression model are the marker effects. These can be obtained
by solving an equation system similar to:

b =
(

X ′X + I
σ2

e

σ2
b

)−1

X ′y (15)

In order to solve this equation system individual level data (genotypes X and phenotypes y) is required. If
these are not available, it is possible to reconstruct X ′y and X ′X from a LD correlation matrix B (from a
population matched LD reference panel) and summary statistics:

X ′X = D0.5BD0.5 (16)
X ′y = Dbm (17)

where Di = 1
σ2

bi
+b2

i
/ni

if the genotypes have been centered to mean 0 or Di = ni if the genotypes have been
centered to mean 0 and scaled to unit variance, and bm = D−1X ′y is the marginal marker effects obtained
from a standard GWAS. The construction of a LD correlation matrix, B, is shown in session 5.

The summary statistics methods used require the construction of a reference LD correlation matrix. Typically
this is done through the use of a fixed 1–10-Mb window approach, as in GCTA-SBLUP or LDpred, which
sets LD correlation values outside this window to zero. Zhu and Stephens detail the reasons for using the
shrinkage estimator of the LD matrix, which shrinks the off-diagonal entries of the LD correlation matrix
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towards zero and is required for the implementation based on summary statistics. Experimentation with
different types of sparse LD correlation matrices led to the conclusion that the shrinkage estimator was the
most stable for SBayesR implementation. Briefly, each element of the reference LD correlation matrix Bij is
shrunk by the factor exp(−ϱij/2m), where m is taken to be the sample size used to generate the genetic map,
(ϱij) is an estimate of the population-scaled recombination rate between SNPs i and j taken as ϱij = 4Necij ,
for Ne the effective population size and cij the genetic distance between sites i and j in centimorgans as
stated in Li and Stephens. LD matrix entries are set to zero if exp(−ϱij/2m) is less than a user-chosen
cutoff.

Genetic distance between sites is derived from the genetic map files containing interpolated map positions
for the CEU population generated from the 1000G OMNI arrays (Data availability). The calculation of
the shrunk LD matrix requires the effective population sample size, which we set to be 11,400 (as in Zhu
and Stephens), the sample size of the genetic map reference, which corresponds to the 183 individuals from
the CEU cohort of the 1000G and the hard threshold on the shrinkage value, which we set to 10−3. This
threshold gave a good balance between computational efficiency and accuracy with, on average, each SNP
having a window width of 10.6 Mb (SD=5.6Mb) across the autosomes. The shrunk LD matrix is stored in
a sparse matrix format (ignoring matrix elements equal to 0) for efficient SBayesR computation. Currently,
the LD matrix construction can only be performed with PLINK hard-call genotypes.

2.4 Fine mapping approaches based on BLR models

BLR models used for fine-mapping have been specialized in order to focus on the markers that have the largest
chance of being causal. The challenge of BLR models is determining which markers have non-zero effect sizes
on a trait. The BLR models are fitted using all markers simultaneously, and fine mapping approaches must
therefore consider sets of markers in a genomic region rather than individual markers, because the effect of
a causative mutation may be distributed across multiple markers. Although markers with non-zero effect
sizes may be referred to as causal, it is important to realize that statistical methods alone cannot determine
causality.

For BLR models, several association statistics have been developed to identify which markers or windows of
markers can be considered as explaining a substantial or significant proportion of the genetic variance.

The genomic region used for defining the marker set can be defined by non-overlapping or sliding windows
across the genome. The genomic region used in the fine mapping procedure may be determined by a fixed
number of markers (e.g. 1000 markers) or by physical (e.g. 1 Mb) or genetic maps (e.g. 1 cM).

In general a BLR model for fine-mapping can be represented by an indicator variable for each marker (or
marker set), with values of 1 for causal and 0 for not, and by organizing these indicators for all markers
(or marker set) of interest in vector d. For m markers, there are 2m possible d vectors (hence, 2m possible
models), ranging from all values of d equal to 0 for no markers causal to all values equal to 1 for all markers
causal. There are several ways to specify the prior probability for a model, such as assuming that variants
are independent and equally likely to be causal or assuming a fixed number of causal variants out of the
total variants.

• To what extend mapping power and false discoveries of the BLR models depends on the choice of prior
require further investigation.

• To what extend mapping power and false discoveries of the BLR models depends on the choice of
association statistics require further investigation.

• To what extend mapping power and false discoveries of the BLR models depends on the choice of
genomic region require further investigation.

6



2.5 Extensions to Multiple Traits and Multiple Components

Bayesian linear regression models have been extended to multiple trait analyses. A multiple trait analysis
is a natural choice in quests for understanding and dissecting genetic correlations between traits using
genetic markers, e.g., evaluating whether pleiotropy or linkage disequilibrium are at the root of between-
trait associations. Furthermore pleiotropy among traits can be utilised to increase accuracy of genomic
predictions.

Multiple trait Bayesian linear regression models can implemented under an restrictive assumption that a
locus simultaneously affects all the traits or none of them (Jia and Jannick 2012). This approach has the
advantage of simplicity, but the disadvantage that many effects might need to be estimated for loci that
have no effect on a trait, and this may erode the accuracy of prediction. This should not be a problem
for asymptotically large datasets, as in that case the fitted locus effects should converge to zero for those
traits not influenced by that locus. Furthermore, this assumption is not biologically meaningful, especially
in multiple trait analyses involving many traits. This assumption of genetic architecture is violated if some
loci have no effect on at least one of the traits while having an effect on the remaining traits.

Therefore a general multiple trait Bayesian linear regression model based on the Bayes C prior have been
proposed (Cheng et al. 2018). In this model a locus is allowed to affect any combination of traits, e.g., in
a 2-trait analysis, the “restrictive” model only allows two situations, whereas in the general model allow all
22 = 4 situations. This model is particularly interesting because it provides insight into whether markers
affect all, some, or none of the traits addressed.For example, the proportion of markers in each of the (0,0),
(1,0), (0,1) and (1,1) categories, where (0,0) means “no effect,” and (1,1) denotes “effect” on both traits. This
model becomes computational intensive for a multiple trait analysis of a large number of traits. To partly
reduce the computational complexicity it can be implemented such that the multi-variate prior distributions
used for marker effects assume the same correlation for all markers.

A multiple trait Bayesian linear regression model based on the Bayes R prior (Kemper et al. 2022) which can
be considered a hybrid model (compared to MT-BLR-STRICT and MT-BLR-FLEX). In this model the prior
for the marker effects is a mixture of normal distributions (i.e. Bayes R prior). However these distributions
were assumed to be independent between traits but with a specified prior proportion of markers having no
effect on any trait. Thus the “learning” between traits is primarily from the marker-trait indicator variable
which is a slightly more flexible approach.

The above mentioned MT-BLR can also be implemented using the Bayes N and Bayes A priors (Fernando
and Gianola).

In summary MT-BLR models provide a flexible approach for the detection of pleiotropic loci which can be
utilised to increase accuracy of genomic predictions. However, the impact of prior assumptions on marker
effects across traits requires further investigation. Also, an important limitation of all methods that attempt
to use genotype–phenotype associations to detect pleiotropic loci is that they cannot differentiate the presence
of a pleiotropic locus from the presence of two closely linked single-trait loci, depending on the extent of
LD in the region. Furthermore issues with inferences about genetic (co) variance based on BLR models
can misrepresent the true genetic parameters if the causal loci are not genotyped because of incomplete LD
between markers and causal loci and among causal loci (de los Campos et al., Gianola et al.).

2.5.1 Posterior sampling distributions for multiple trait BLR model based on the Bayes C
prior

A multiple trait BLR (MT-BLR) model estimate joint marker effect accounting for LD and borrow informa-
tion across traits based on the following equation (two-trait example):

b =
[
b1
b2

]
=

([
X

′

1X1 0
0 X

′

2X2

]
+ I ⊗ B−1E

)−1 [
X

′

1y1
X

′

2y2

]
(18)
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• b1 and b2 are the marker effects for trait 1 and 2

• y1 and y2 are the vectors of phenotypes for trait 1 and 2

• X1 and X2 are the matrices of genotypes for trait 1 and 2

• X
′

1X1 and X
′

2X2 are the LD t-erms which may differ across ancestries

• B is the genetic co-variance matrix between traits

B =
[

σ2
b1

σ2
b12

σ2
b21

σ2
b2

]
(19)

• E is the residual co-variance matrix between traits

E =
[

σ2
e1

σ2
e12

σ2
e21

σ2
e2

]
(20)

• the shrinkage term, B−1E, that depends on both prior distribution of the marker effects (e.g. Bayes
C) and the model selection procedure (e.g. marker-trait configuration)

The covariance matrix B for the marker effect is a priori assumed to follow an inverse Wishart distribution
IW (S̃2

b , ν̃b) where ν̃b and S̃2
b (t by t matrix) are the prior degrees of freedom and scale parameters.

The full conditional distribution for B the covariance matrix for the jth marker is also an inverse Wishart
distribution of the form:

IW (S̃2
b + bb′, ν̃b + m), where b is a matrix (m x t) of sampled marker effects

or

IW (S̃2
β + bjb

′

j , ν̃β + 1), where bj is a vector (t x 1) of sampled marker effects.

Difference between the two sampling distributions is that the former is the same for all markers whereas the
latter is more flexible as it allows the markers to their own covariance matrix.

The covariance matrix E for the residual effects is a priori assumed to follow an inverse Wishart distribution
IW (S̃2

e , ν̃e) where ν̃e and S̃2
e (t by t matrix) are the prior degrees of freedom and scale parameters.

The full conditional distributions for the covariance matrix E for residuals is also an inverse Wishart distri-
bution of the form:

IW(S̃2
e + ee′ , ν̃e + m), where e is a matrix (n x t) of residual effects

The full conditional distribution for bj can be be written as:

fj (bj |θ−j , dj , ỹ) ∝ N
(
C−1

j rj , C−1
j

)
(21)

where C = D
′

jE−1Djx
′

jxj + G−1 and rj = x
′

j ỹE−1Dj = b̃jx
′

jxjE−1Dj

where Dj is a diagonal matrix whose kth diagonal entry is an indicator variable indicating whether the
marker jth effect for trait k is zero or nonzero.

The marginal full conditional probability for the indicator variable of dj is:

fj (dj = c|θ−j , ỹ) = fj (ỹ|dj = c, θ−j) f (dj |πc)∑C
k=1 fj (ỹ|dj = k, θ−j) f (dj |πk)

(22)
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where fj (ỹ|dj = c, θ−j) = |C−1
j |0.5 exp

[
1
2 r

′

jC−1
j rj

]
In the most general case, any marker effect might be zero for any possible combination of t traits resulting
in 2t possible combinations of dj : For example, in a t=2 trait model, there are 2t = 4 combinations for dj :
(0,0), (0,1), (1,0), (1,1). Suppose, in general, we use numerical labels 1,2,. . . ,l for the 2t possible outcomes
for dj then the prior for dj is a categorical distribution.

3 Bayesion Linear Regression Model for Individual Effects

3.1 Statistical model and model parameters

We begin with a description of the general two-trait model since the simpler models are special cases. The
general two-trait model partitions the total phenotypic variance into a component explained by genetic
marker effects, g, and a component due to residual effects that are not associated with markers, e. Addi-
tionally, the component due to genetic markers g is subdivided into contributions from C marker sets gi,
i = 1, . . . , C.

The model for trait 1 is assumed to be

y1 = µ1 +
∑C

i=1
g1i + e1, (23)

and similar for trait 2,

y2 = µ2 +
∑C

i=1
g2i + e2, (24)

In these expressions, the µ’s are scalar means for each trait, the g′s are contributions to genetic effects from
each of C marker sets that can be associated with genetic marker information (genomic effects or genomic
values), the e′s represent a residual component that cannot be captured by regression on markers.

The genomic value for marker set k is defined as the sum of the effects of all the markers in marker set k,

g1k =
∑pk

i=1
wijkb1ik

= w′
jkb1k, (25)

with an equivalent expression for trait 2. In (25), pk is the number of markers in marker set k, the scalar
wijk is the observed (centered and scaled) label for marker i in individual j for marker set k, and b1ik is the
effect of marker i for marker set k of trait 1.

The n by 1 vectors of genomic effects for trait 1 and trait 2 for marker set k are g1k = Wkb1k and g2k = Wkb2k,
respectively, where Wk = {wijk} is the observed n by pk matrix of marker genotypes of marker set k. The
joint distribution of vectors b1k and b2k is assumed to be

[
b1k

b2k

]
∼ N

([
0
0

]
,

[
Iσ2

b1k
Iσb1kb2k

Iσb1kb2k
Iσ2

b2k

])
(26)

where the I ′s represent pk by pk identity matrices, σ2
b1k

(
σ2

b2k

)
is the prior variance of marker effects for trait

1 (trait 2) in marker set k, and σb1kb2k
is their prior covariance.

Due to the centering the rank of Wk is n−1. It follows from these assumptions and from standard properties
of the multivariate normal distribution that the model for the joint distribution of genomic values in trait 1
and 2 is the singular multinormal (SN) distribution,
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[
g1k

g2k

]
∼ SN

([
0
0

]
,

[
Gkσ2

g1k
Gkσg1kgfk

Gkσg1kg2k
Gkσ2

g2k

])
, k = 1, . . . , C. (27)

Above, σ2
g1k

is the genomic variance in trait 1 for marker set k, σ2
g2k

is the genomic variance in trait 2 for
marker set k, σg1kg2k

is the genomic covariance between trait 1 and 2 for marker set k, Gk = 1
pk

WkW ′
k is the

genomic relationship matrix of rank n−1 for marker set k, and SN denotes the singular normal distribution
(details in the Supplementary Methods). A more compact notation for (27) is

gk = (g′
1k, g′

2k)′ ∼ SN (0, Gk ⊗ V gk) (28)

where

Vgk =
[

σ2
g1k

σg1kg2k

σg1kg2k
σ2

g2k

]
. (29)

Similarly, collecting the e′s in vectors with n elements for each trait joint distribution is assumed to be

[
e1
e2

]
∼ N

([
0
0

]
,

[
Iσ2

e1
Iσe1e2

Iσe1e2 Iσ2
e2

])
, (30)

The identity matrix I is of order n by n in (30) . The phenotypes for trait 1 and 2, y1 and y2, each with n
elements, are conditionally normally distributed, given g, and e, and take the form

y1|µ1, g1 ∼ N

(
1µ1 +

∑C

i=1
g1i, Iσ2

e1

)
, (31)

y2|µ2, g2 ∼ N

(
1µ2 +

∑C

i=1
g2i, Iσ2

e2

)
, (32)

where σ2
e1 (σ2

e2) is the residual variance for the trait 1 (trait 2).

3.2 Extensions to multiple components

The model specified quantify the relative contribution from each of the marker sets by fitting separate
variance components for each of those marker sets. Here we describe the basis for this partitioning. The
point of departure is to assume that the 2nt by 1 vector of genomic effects g = (g′

1, g′
2)′ is equal to the sum

of the vectors of genomic effects belonging to C marker set components. Then

g =
C∑

i=1
gi, V ar (g|W ) =

C∑
i=1

V ar (gi|Wi) =
C∑

i=1

1
pi

WiW
′
i ⊗ Vgi (33)

where gi is the 2n by 1 vector of genomic values for trait 1 and 2, associated with component i, i = 1, . . . , C,
pi is the number of marker genotypes in component i, and Vgi is the 2 by 2 genomic covariance matrix for
marker set i. This holds under the model assumption that the components of the vector of marker effects
b = (b′

1, . . . , b′
i, . . . b′

C)′ are realisations from bi ∼ N (0, I ⊗ Vbi), with Cov
(
bi, b′

j

)
= 0, i, j = 1, . . . , C; i ̸= j.

Then Cov
(
gi, g′

j |W
)

= Cov
(
Wibi, b′

jW ′
j

)
= 0. In these expressions, bi =

(
b1

′
i, b2

′
i

)′ is the vector of marker
effects of marker set component i, and

10



Vbi =
[

σb1
2
i σb1ib2i

σb1ib2i
σb2

2
i

]
. (34)

Two simple two-trait models are implemented that partition the total genomic variance into multiple com-
ponent defined by marker sets. Details of the prior distributions of the parameters of the Bayesian models
and of the Markov chain Monte Carlo algorithm can be found in the Supplementary Methods.

3.2.1 Inferences

For single trait analysis, inferences are reported in terms of ratios for the ith marker sets defined as:

h2
gi

=
σ2

gi

σ2
g

, i = 1, . . . , C. (35)

with σ2
g = V ar

(∑C
i=1 gi

)
. When the elements of W are scaled so that the average of the diagonal elements

of WW ′ is equal to 1, this ratio quantifies the proportion of total genomic variance, captured by genetic
marker information associated with marker set i. The ratio involving marker effects from all the marker sets
for trait 1 is

h2
g1

=
σ2

g1

σ2
g1

+ σ2
e1

(36)

with a similar expression for trait 2.

We also report within marker set genomic correlations

rgi
=

σgi1 gi2

σgi1
σgi2

, i = 1, . . . , C, (37)

and the total genomic correlation between traits, defined as

rgi =
Cov

(∑C
i=1 g1i

,
∑C

i=1 g2i

)
√

σ2
g1

σ2
g2

(38)

The absence of symmetry of posterior distributions is well captured by the Bayesian McMC methods. In
a situation like this, summarizing results in the form of posterior means and standard deviations would be
misleading. In the presence of asymmetry, posterior means are poor indicators of points of high probability
mass. We therefore summarize inferences in terms of posterior modes and posterior intervals.

3.3 Estimation of model parameters

The models are implemented using empirical Bayesian methods. The models were implemented using a
Bayesian, Markov chain Monte Carlo approach, whereby the hyperparameters of the dispersion parameters
of the Bayesian model were estimated by maximum likelihood, and conditional on these, the model was
fitted using Markov chain Monte Carlo. To illustrate, consider determining a value of the scale parameter of
an inverse chi square distribution, which is the prior assumed for the variance components. This is achieved
by equating the mode of the inverse chi square prior density, for a fixed value of the degrees of freedom, to
the maximum likelihood estimate and solving for the scale parameter. The decision to huse this approach
rather than classical likelihood is based on the need to obtain measures of uncertainty that account as much

11



as possible for the limited amount of information in the data without resorting to large sample theory, which
is inherent in classical likelihood. This is relevant if the data are of limited size and results in marginal
posterior distributions that are expected to be asymmetric, particularly in the case of the more complex,
general two-trait model.

A number of technical details are presented in this section. These include a formal derivation of the proba-
bility model for the variance between traits and details of a spectral decomposition that plays an important
computational role in the Markov chain Monte Carlo strategy implemented, as well as a full description of
the Bayesian models.

3.3.1 The spectral decomposition

The Bayesian implementation of the model is facilitated making use of the following spectral decomposition
performed within each chromosome segment (we drop subscripts that refer to marker sets to avoid clotting
the notation). Let

g1 = Wb1g2 = Wb2 (39)

where W is of order n × p and gm is of order n × 1. The spectral decomposition of WW ′ (for each marker
set) is

WW ′ = U∆U ′ =
∑nt

i=1
λiUiU

′

i , (40)

where U = [U1, U2, . . . , Unt
], of order n × n is the matrix of eigenvectors of WW ′, Uj is the jth column

(dimension n×1), and ∆ is a diagonal matrix with elements equal to the eigenvalues λ1, λ2, . . . , λnt
associated

to the nt eigenvectors. Since WW ′ is positive semidefinite the eigenvalues are λi ≥ 0, i = 1, 2, . . . , n. The
eigen vectors satisfy U ′U = UU ′ = I.

Define the n × n matrix G = 1
p WW ′ = 1

p WW ′ and write this as

G = 1
p WW ′

= 1
p U∆U ′

= UDU ′

where
D = 1

p
∆.

Matrix G (peculiar to each marker set) is singular and the diagonal matrix D (also peculiar to each marker
set) contains only n − 1 positive eigenvalues.

3.3.2 The case of singular G

Due to the singularity of G,
[
g|W, σ2

g

]
does not follow a multivariate normal distribution but a singular

normal distribution instead. The singular normal density is

p
(
g1|W, σ2

g1
)

= 1
(2π)

n−1
2

(
λ1σ2

g1
. . . λn−1σ2

g1

) 1
2

exp
(

−g′
1G−g1

2σ2
g1

)
(41)

where the n − 1 λ′s are the non-zero eigenvalues of G and G− is any generalised inverse of G. One choice
choice of generalised inverse of G is

12



G− = UD−U ′ (42)

where U and D are of order nt by nt

D− = 1
p



1
λ1

0 . . . . . . 0

0 . . . . . . . . . 0
...

... 1
λn−1

. . . 0
...

... . . .
. . . 0

0 0 0 0 0


= 1

p

[
D−1

1 0
0′ 0

]

Above, D1 = diag (λi)n−1
i=1 , a diagonal matrix of dimension n−1 by n−1 that contains the nonzero eigenvalues

λi. The remaining elements of D− are all equal to zero.

3.3.3 A probabilistically equivalent reparameterisation of the random regression model

We describe a reparameterisation of the original two-trait model that simplifies the Markov chain Monte
Carlo computations.

For each marker set (omitting the subscripts) define the row vector random variable α′ = (α′
1, α′

2) of di-
mension 1 by 2n, with vectors α1 and α2, each of dimension n by 1 associated with trait 1 and 2, with
distribution

(
α1
α2

)
∼ SN

([
0
0

]
,

[
Dσ2

g1
Dσg1g2

Dσg1g2 Dσ2
g2

])
(43)

where D is a diagonal matrix (associated with a particular marker set) of dimension n×n, with has eigenvalues
λi, i = 1, . . . , n as diagonal elements, of which the first n − 1 are positive and the rest are equal to zero. We
define for each marker set

Vg =
[

σ2
g1

σg1g2

σg1g2 σ2
g1

]
. (44)

In a particular marker set, the random variables(
Uα1
Uα2

)
∼ SN

([
0
0

]
,

[
UDU ′σ2

g1
UDU ′σg1g2

UDU ′σg1g2 UDU ′σ2
g2

])
(45)

and (
g1
g2

)
∼ SN

([
0
0

]
,

[ 1
p WW ′σ2

g1
1
p WW ′σg1g2

1
p WW ′σg1g2

1
p WW ′σ2

g2

])
(46)

have the same distribution since UDU ′ = 1
p WW ′. Here p is the number of genetic markers in the marker

set. Therefore the structure can be written as

y1|µ1,
∑C

i=1
α1i ∼ N

(
1µ1 +

∑C

i=1
Uiα1i, Iσ2

1e

)
, (47)

y2|µ2,
∑C

i=1
α2i ∼ N

(
1µ2 +

∑C

i=1
Uiα2i, Iσ2

2e

)
i = 1, . . . , C. (48)
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3.3.4 Prior distributions

The prior distribution of the µ′s is N
(
0, 105)

. The prior distributions of Vg and Vh are scaled inverted
Wishart with degrees of freedom set equal to 2.5 and scale parameters Pg and Ph, respectively. The degrees
of freedom generate a proper distribution with overdispersed values. The prior distributions of σ2

rm
and σ2

rf

are scale inverted chi square densities. The degrees of freedom of these densities are set equal to 1.0 which
leads to vague prior information. For example, when the scale is equal to 0.1, the modal value of the prior
distribution is 0.03 and the prior probability that the variance component is smaller than this value is 56.
The prior probability that the variance component is between 0.03 and 0.3 is 29.

The scale parameters of all these distributions are estimated using maximum likelihood. This involved
obtaining maximum likelihood estimates of the two-trait model (for Models H and G, each sex considered
as one trait), and then equating these estimates to the mode of the relevant prior distribution, written as
a function of the scale parameter. In the case of the general two-trait model, single-trait likelihoods were
fitted instead. The off-diagonal elements of the scale parameter of inverse Wishart distributions were set
equal to zero.

3.3.5 Fully conditional posterior distributions

The fully conditional posterior distributions of a parameter θ is denoted [θ|All, z] where All denotes all the
parameters of the model except θ. Here we sketch the form of these densities.

3.3.5.1 Updating the α′s with subscripts 1 for trait 1, 2 for trait 2 and k for marker set, from the
bivariate normal distribution

[
αki1
αki2

∣∣∣∣ All, y

]
∼ N

[
α̂ki1
α̂ki2

]
,

[
I + σ2

e

λki

(
σ2

g1
σg1g2

σg1g2 σ2
g2

)−1

k

]−1

σ2
e

 , i = 1, 2, . . . , n − 1,

where (
I + λ−1

ki V −1
gk

σ2
e

)
α̂is =

 U ′
ki

(
y1 − 1µ1 −

∑
i ̸=k Uiαhi1

)
U ′

ki

(
y2 − 1µ2 −

∑
i̸=k Uiαi2

)  , α′
is = (αi1, αi2) .

The strategy updates jointly the α′s for both traits from a given marker set, conditional on the α′s from the
remaining marker sets.

3.3.5.2 Updating µ1 and µ2 The prior distribution of both scalars µ1 and µ2 are the normal process
N

(
0, 105)

. The fully conditional for µ1 is proportional to

[µ1|All, x] ∼ N
(

µ̂1, (1′1 + kµ1)−1
σ2

e

)
where

(1′1 + kµ1) µ̂1 = 1′ (ym − Uαm − Tγ1) , kµ1 = σ2
e

105 .

A similar expression holds for µ2.
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3.3.5.3 Updating Vg For each of the marker sets, the update involves drawing samples from scaled
inverse Wishart distributions. The fully conditional of the 2 × 2 matrix Vg is proportional to

[αm, αf |Vg, D] [Vg|νg, Pg] . (49)

The second term is inverse Wishart the prior distribution of Vg, IW (νg, Pg) with density

p (Vg|νg, Pg) ∝ |V g|−
1
2 (vg+3) exp

[
−1

2 tr
(
V −1

g Pg

)]
(50)

where the hyperparameters νg and Pg are the degrees of freedom and the scale, respectively. The modal
value of this distribution is given by Pg/(νg + p + 1), where in our case, p = 2. On defining (see ?, page 574)

Sg =
[

α′
1D−1α1 α′

1D−1α2
α′

2D−1α1 α′
2D−1α2

]
,

the density of the fully conditional posterior distribution of Vg is

p (Vg|All, y) ∝ |Vg|−
k
2 |V g|−

1
2 (vg+3) exp

[
−1

2 tr
(
V −1

g Pg

)]
exp

[
−1

2 tr
(
V −1

g Sg

)]
= |V g|−

1
2 (k+vg+3) exp

[
−1

2 tr
[
V −1

g (Sg + Pg)
]]

(51)

where k = n − 1, which is in the form of an inverse Wishart distribution of dimension 2, k + vg degrees of
freedom and scale matrix (Sg + Pg).

3.3.5.4 Updating Ve The update here is similar and it involves again drawing samples from scaled
inverse Wishart distributions. The fully conditional posterior distribution of the 2 × 2 matrix Ve defined in
(??) is proportional to

[e1, e2|Ve, E] [Ve|νe, Pe] (52)

where the second term is the prior distribution of Ve with hyperparameters νe and Pe of the form

p (Ve|νe, Pe) ∝ |Ve|−
1
2 (ve+3) exp

[
−1

2 tr
(
V −1

e Pe

)]
(53)

symbolised IW (νe, Pe).

The density is

p (Ve|All, y) ∝ |Ve|−
1
2 (n+ve+3) exp

[
−1

2 tr
[
V −1

e (Se + Pe)
]]

,

an inverse Wishart distribution of dimension 2, n + ve degrees of freedom and scale matrix (Se + Pe), where

Sh =
[

γ′
mE−1γm γ′

mE−1γf

γ′
f E−1γm γ′

f E−1γf

]
.
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